23 research outputs found

    An economic approach to collective management of endemic animal diseases

    Get PDF
    The control of animal diseases is an issue of particular interest in animal production chains. Because of their direct impact on production, animal diseases generate income shortfalls for farmers. In some cases, diseases may also have lead to human health problems and undermine market access conditions. Because of these potential negative impacts, some diseases are regulated. But for many communicable diseases, much latitude is given to individual control of the disease by farmers. In the case of a communicable disease, individual management therefore generates an externality, as individual decisions have an impact on the level of risk exposure of other farms to the disease. Thus, the collective result of individual management may differ from the collective expectations. This gap can be reduced by collective actions. The aim of this paper is to provide a conceptual framework for the study of collective management of animal diseases, which will provide management tools to collective managers of animal health. The development of this conceptual framework rests on three steps. We first discuss the means to model the individual decisions of farmer in regard to animal diseases. Then it should take into account the interaction between the epidemiology of the disease and the individual decisions of farmers, by the coupling of epidemiologic and economic models. Finally, collective management tools are introduced in these models in order to test incentives schemes for horizontal coordination. Finally, collective actions are introduced in these models, in order to test devices for horizontal coordination (management of prevalence between farms).Animal health economics - Micro modelling – Bio-economic modelling - endemic animal diseases, Animal health economics, Micro modelling, Bio-economic modelling, endemic animal diseases, Livestock Production/Industries,

    Factors shaping community assemblages and species co-occurrence of different trophic levels

    Get PDF
    Species assemblages are the results of various processes, including dispersion and habitat filtering. Disentangling the effects of these different processes is challenging for statistical analysis, especially when biotic interactions should be considered. In this study, we used plants (producers) and leafhoppers (phytophagous) as model organisms, and we investigated the relative importance of abiotic versus biotic factors that shape community assemblages, and we infer on their biotic interactions by applying three-step statistical analysis. We applied a novel statistical analysis, that is, multiblock Redundancy Analysis (mbRA, step 1) and showed that 51.8% and 54.1% of the overall variation in plant and leafhopper assemblages are, respectively, explained by the two multiblock models. The most important blocks of variables to explain the variations in plant and leafhopper assemblages were local topography and biotic factors. Variation partitioning analysis (step 2) showed that pure abiotic filtering and pure biotic processes were relatively less important than their combinations, suggesting that biotic relationships are strongly structured by abiotic conditions. Pairwise co-occurrence analysis (step 3) on generalist leafhoppers and the most common plants identified 40 segregated species pairs (mainly between plant species) and 16 aggregated pairs (mainly between leafhopper species). Pairwise analysis on specialist leafhoppers and potential host plants clearly revealed aggregated patterns. Plant segregation suggests heterogeneous resource availability and competitive interactions, while leafhopper aggregation suggests host feeding differentiation at the local level, different feeding microhabitats on host plants, and similar environmental requirements of the species. Using the novel mbRA, we disentangle for the first time the relative importance of more than five distinct groups of variables shaping local species communities. We highlighted the important role of abiotic processes mediated by bottom-up effects of plants on leafhopper communities. Our results revealed that in-field structure diversification and trophic interactions are the main factors causing the co-occurrence patterns observed.Fil: Trivellone, Valeria. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Bougeard, Stephanie. French Agency for Food, Environmental and Occupational Health Safety; FranciaFil: Giavi, Simone. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Krebs, Patrik. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Balseiro, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Dray, Stephane. Université Claude Bernard Lyon 1; FranciaFil: Moretti, Marco. Swiss Federal Institute for Forest, Snow and Landscape Research; Suiz

    Livestock epidemics and catastrophic risk management: State of the art and prospects on economic dynamics

    No full text
    The economic consequences of livestock epidemics have been long studied for purposes of estimating the costs of the veterinary measures. In this paper, we show that this catastrophic risk may have wide market consequences, and that the risk management systems are quite limited to compensate long term impacts in the European context of growing trade. Through a detailed literature review we present the main developments of the economic literature aiming to highlight the economic consequences of animal epidemics such as Foot and Mouth Disease. We acknowledge that a very few studies have focused on the economic dynamics and on the long run effects occurring after an epidemic disease outbreak. We discuss the appropriateness of a dynamic approach to reveal that the de-structuring of the livestock markets affects the production dynamics as well as the whole agricultural sphere, whose financial implications remain poorly studied. In addition, we highlight the importance of taking into account these phenomena for the development of risk management systems, and we emphasize the growing interest of a dynamic Computable General Equilibrium approach

    Farmers’ willingness to vaccinate against endemic animal diseases: A theoretical approach

    No full text
    The aim of this paper is to propose an analytical framework to explore farmers’ vaccination decisions against endemic animal diseases. First, a theoretical model is developed to highlight how the characteristics of the vaccine influence the farmer’s vaccination decisions over time and the resulting disease dynamics. Numerical simulations are then performed to illustrate the impacts of the different vaccine effectiveness parameters on these dynamics

    An economic approach to collective management of endemic animal diseases

    No full text
    The control of animal diseases is an issue of particular interest in animal production chains. Because of their direct impact on production, animal diseases generate income shortfalls for farmers. In some cases, diseases may also have lead to human health problems and undermine market access conditions. Because of these potential negative impacts, some diseases are regulated. But for many communicable diseases, much latitude is given to individual control of the disease by farmers. In the case of a communicable disease, individual management therefore generates an externality, as individual decisions have an impact on the level of risk exposure of other farms to the disease. Thus, the collective result of individual management may differ from the collective expectations. This gap can be reduced by collective actions. The aim of this paper is to provide a conceptual framework for the study of collective management of animal diseases, which will provide management tools to collective managers of animal health. The development of this conceptual framework rests on three steps. We first discuss the means to model the individual decisions of farmer in regard to animal diseases. Then it should take into account the interaction between the epidemiology of the disease and the individual decisions of farmers, by the coupling of epidemiologic and economic models. Finally, collective management tools are introduced in these models in order to test incentives schemes for horizontal coordination. Finally, collective actions are introduced in these models, in order to test devices for horizontal coordination (management of prevalence between farms)
    corecore